
ar
X

iv
:2

31
0.

11
58

0v
1 

 [
m

at
h.

C
O

] 
 1

7 
O

ct
 2

02
3

Optimal Hamilton covers and linear arboricity for random graphs

Nemanja Draganić ∗ Stefan Glock † David Munhá Correia ∗ Benny Sudakov ∗

Abstract

In his seminal 1976 paper, Pósa showed that for all p ≥ C logn/n, the binomial random graph
G(n, p) is with high probability Hamiltonian. This leads to the following natural questions, which
have been extensively studied: How well is it typically possible to cover all edges of G(n, p) with
Hamilton cycles? How many cycles are necessary? In this paper we show that for p ≥ C logn/n,
we can cover G ∼ G(n, p) with precisely ⌈∆(G)/2⌉ Hamilton cycles. Our result is clearly best
possible both in terms of the number of required cycles, and the asymptotics of the edge probability
p, since it starts working at the weak threshold needed for Hamiltonicity. This resolves a problem
of Glebov, Krivelevich and Szabó, and improves upon previous work of Hefetz, Kühn, Lapinskas
and Osthus, and of Ferber, Kronenberg and Long, essentially closing a long line of research on
Hamiltonian packing and covering problems in random graphs.

1 Introduction

Given two (hyper)graphs H and G, can we partition the edges of G into copies of H? This is the
general framework of graph decomposition problems, which have been extensively studied for various
instances of graphs H and G. One of the most well-known results of this type was shown by Kirkman
in 1847, who proved that the complete graph Kn can be decomposed into copies of K3 if and only
if n ≡ 1, 3 mod 6. The extension of this condition to general graphs F instead of K3 remained an
unsolved problem for a century until Wilson resolved it in 1975. He showed that for every graph F ,
if n is large enough and certain (necessary) divisibility conditions are satisfied, then Kn has an F -
decomposition. In the case of hypergraphs, solving a problem which goes back to the 19th century,
Keevash [17] showed that large enough complete hypergraphs can be decomposed into constant sized
cliques, if divisibility conditions are satisfied, and the corresponding problem for general hypergraphs
F was settled in [13].

Since it is not always possible to decompose G into copies of H, a natural question is how many
edge-disjoint copies of H can we pack into G. To this end, we define an H-packing as a collection of
edge-disjoint copies of H in G. Another avenue of study is that of covering problems, where one asks
for the minimal number of copies of H needed to cover G, or in other words, what is the size of a
minimal H-cover in G. Packing and covering problems are closely related, and in some instances are
even trivially equivalent. For example, the famous Erdős–Hanani problem [8] on packing and covering
complete s-uniform hypergraphs with k-cliques, solved by Rödl [25], has the same asymptotic answer
for both its covering and packing version.

In this paper, we are concerned with packings and coverings by Hamilton cycles. One of the oldest
results of this flavour is Walecki’s theorem from around 1890, stating that Kn can be decomposed
into Hamilton cycles if n is odd, and into Hamilton cycles plus one perfect matching if n is even. A
far-reaching generalization of this result, when Kn is replaced by a regular graph with degree at least
n/2, was proven by Csaba, Kühn, Lo, Osthus and Treglown [6], thereby confirming a conjecture of
Nash-Williams [24] from 1970. Clearly, the bound on the degree is best possible since otherwise the
graph might not even contain a Hamilton cycle.

Another natural graph class to study questions about Hamilton cycles are random graphs. Here,
we consider the binomial random graph G(n, p) which has n vertices and edges are chosen to appear
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independently with probability p. We say that an event (or more precisely, a sequence of events) holds
with high probability (whp) if the probability of the event tends to 1 as n → ∞. The investigation of
packings of Hamilton cycles in random graphs was initiated by Bollobás and Frieze [5]. In the last
decades, significant attention has been directed towards the problem of identifying optimal packings
and coverings with Hamilton cycles within random graphs. This attention has resulted in the solution
of the packing problem through a series of papers by multiple authors. In particular, it is clear that
a packing of Hamilton cycles is of size at most ⌊δ(G)/2⌋; hence, the question becomes interesting for
random graphs starting with p ∼ logn

n . The results obtained in [5, 18, 19, 20] cover the whole range
of p, thus confirming a conjecture of Frieze and Krivelevich [11].

Theorem 1.1 ([5, 18, 19, 20]). For any p, in G ∼ G(n, p) whp there exists a collection of ⌊δ(G)/2⌋
edge-disjoint Hamilton cycles.

In contrast to the Erdős–Hanani problem where the target graph for packing H remains small com-
pared to G, the situation changes when we permit H to grow in size with G. This leads to a departure
from the equivalence between the (asymptotic) packing and covering problems. Indeed, Kuzjurin [21]
showed that asymptotically optimal packings exist only when the clique size is of order less than

√
n,

while asymptotically optimal coverings exist up to clique size o(n).
Given the success of the packing problem, it was natural to consider the “dual” question of

covering G(n, p) with a small number of Hamilton cycles. Somewhat surprisingly, the covering
question has withstood the test of time to a greater extent than its corresponding packing version.
The covering prolem was initiated by Glebov, Krivelevich and Szabó [12], who showed that whp
(1 + o(1))np/2 Hamilton cycles suffice to cover G ∼ G(n, p), whenever p ≥ n−1+ε for any constant
ε > 0. They conjectured that the optimal number of ⌈∆(G)/2⌉ Hamilton cycles can be attained and

that further, this could be done whenever p = ω
(

logn
n

)

. Further, this question is the second problem

listed in the well-known bibliography on Hamilton cycles in random graphs by Frieze [10].
The result of Glebov, Krivelevich and Szabó was subsequently improved by Hefetz, Kühn, Lap-

inskas and Osthus [16], who showed that for log117 n
n ≤ p ≤ 1− n−1/8 one can whp cover G ∼ G(n, p)

with ⌈∆(G)/2⌉ Hamilton cycles. Later, Ferber, Kronenberg and Long [9] were able to improve the

range of p for which the approximate covering result holds, showing that when p ≫ log2 n
n then whp

G ∼ G(n, p) can be covered with (1+o(1))np/2 Hamilton cycles. We resolve this problem by proving
that the conjecture of Glebov, Krivelevich and Szabó is true in the most interesting range, starting
at the (weak) threshold for Hamiltonicity.

Theorem 1.2. Let C logn
n ≤ p(n) ≤ n−2/3 for large enough C. Then whp G(n, p) can be covered by

⌈∆(G)/2⌉ Hamilton cycles.

Our result has an immediate corollary concerning the linear arboricity conjecture, which states that
every graph G can be decomposed into ⌈∆(G)+1

2 ⌉ linear forests (see [1]). At the moment the best
result towards this is by Lang and Postle [22] who showed that G can be decomposed into at most
∆
2 + Õ

(√
∆
)

linear forests. Since a full resolution is currently out of sight, it is natural to consider

proving the linear arboricity conjecture for some interesting classes of graphs, such as random graphs.
Building on the method of Alon [2] for the linear arboricity conjecture, McDiarmid and Reed [23]
proved it for the class of random regular graphs. In [14], the second author, Kühn and Osthus use
the aforementioned covering result of Hefetz, Kühn, Lapinskas and Osthus [16] to show that whp, the

linear arboricity conjecture holds for G(n, p), when p ≥ log117 n
n . Using Theorem 1.2, we can extend

the range of p to the same as in Theorem 1.2. Since the deduction is the same as in [14], we omit
the details.

Corollary 1.3. In the same range as above, with high probability G ∼ G(n, p) can be covered by

⌈∆(G)
2 ⌉ linear forests.

Note that the number of linear forests required in this result is even slightly less than in the linear
arboricity conjecture. In general, the +1 is needed, for instance if G is regular.
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2 Outline

In this section, we briefly sketch our approach. Since the packing problem is already solved, we might
assume that G ∼ G(n, p) has a collection of ⌊δ(G)/2⌋ edge-disjoint Hamilton cycles. Let L be the
graph consisting of those edges which are not covered by these cycles. Then our goal is now to cover
L with ⌈∆(L)/2⌉ Hamilton cycles, where we are allowed to reuse some edges of G−L. Note here that
L is much sparser than G. Indeed, G has average degree Θ(np), whereas ∆(L) = O(

√
np log n). Yet,

it is still too expensive to cover every single edge of L with a new Hamilton cycle (which would be
possible using standard tools). Hence, a natural strategy to proceed is to split L into few pieces, and
extend each piece to a Hamilton cycle. Since every proper subgraph of a Hamilton cycle is a linear
forest, it makes sense to take those as the “pieces” we wish to split L into. Clearly, not every linear
forest can be extended to a Hamilton cycle, for instance if some end vertices of paths have all their
neighbours in the interior of other paths. Hence, what we actually need is a decomposition of L into
“well-behaved” linear forests, and we will prove that every “well-behaved” linear forest can indeed be
extended to a Hamilton cycle (see Lemma 4.5). Note that with this result, one can already answer the
approximate version of the problem, since one can simply split L into O(∆(L)) = o(pn) matchings.
By splitting each such matching randomly into a constant number of smaller matchings, one obtains
a collection of well-behaved linear forests, and each of them can be extended into a Hamilton cycle.
Hence, together with the packing of G− L, this covering uses (1 + o(1))np/2 Hamilton cycles.

To get the exact bound ⌈∆(G)/2⌉, the decomposition of L into linear forests needs a more
delicate argument. We let B denote the set of vertices which are close to having maximum degree
in L. Crucially, this set is rather small, and all vertices have only few neighbours inside B. This
allows us to cover all edges incident with B with the optimal number of ⌈∆(L)/2⌉ linear forests
(see Lemma 3.4), which uses a Kőnig–Hall type argument. The maximum degree of L − B is
significantly smaller, thus we can decompose it into linear forests using approximate versions of the
linear arboricity conjecture. We then show that these two collections of linear forests can be “merged”
to obtain a single collection of ⌈∆(L)/2⌉ linear forests which decompose L. In fact, recall that we
need “well-behaved” linear forests. To achieve this, we will actually partition L−B into a large but
constant number of subgraphs and apply the approximate version of the linear arboricity conjecture
to each subgraph individually.

3 Preliminaries

In this section we collect several results in graph theory and random graph theory, whose proofs rely
on standard arguments. Before that, we give some definitions and notation.

3.1 Notation and definitions

Throughout the paper we use standard graph theoretic notation. Given a graph G we denote by
V (G) its vertex set and by E(G) its edge set. Given a subset S ⊆ V (G), we denote by G[S] the
subgraph of G induced by S and by NG(S) the external neighbourhood of S in G (omitting the
subscript whenever it is unambiguous). For subsets S1, S2 ⊆ V (G) we denote by eG(S1, S2) the
number of edges with one endpoint in S1 and the other in S2. For a vertex v ∈ V (G), we denote by
∂G(v) the set of edges incident to v in G. A cherry is a path of length 2, whose vertex of degree 2 we
call the center of the cherry. A cherry-matching is a collection of vertex-disjoint cherries. We denote
by δ(G) and ∆(G) the minimum and maximum degree of G, respectively. A linear forest is a graph
which consists of a disjoint union of paths. A Hamilton cycle in a graph G is a cycle which contains
every vertex in G. We let G(n, p) denote the binomial random graph on n vertices, where each edge
is included independently with probability p.

3.2 Auxiliary results about linear forests

We start with a simple lemma which allows us to extend a linear forest by edges of a low maximum
degree graph.

3



Lemma 3.1. Let G,H be two graphs such that every vertex v ∈ V (H) has degree at most d in both
H and G. Then, if there is a collection F of at least 4d+1 linear forests F covering the edges of G,
then there is a collection of |F| linear forests covering the edges of G ∪H.

Proof. We add the edges of H one by one to linear forests in F . Suppose we added i < e(H)
edges from H to linear forests in F , and consider an edge e = (u, v) which we did not add yet. Since
∆(G ∪H) ≤ 2d, the number of linear forests in which u is not isolated is at most 2d, and the same
holds for v. Therefore, there is a linear forest in which both u and v are isolated, so we can add e to
that forest. This completes the proof. �

The following is a simple corollary of Hall’s marriage theorem.

Lemma 3.2. Let G be a bipartite graph with bipartition V (G) = A∪B such that for all a ∈ A, b ∈ B
we have d(b) ≥ 2d(a). Then, G has a collection of disjoint cherries such that their centers cover B.

Proof. Consider the auxiliary bipartite graph H with parts A,B′, where B′ consists of two disjoint
copies of B, and (a, b) is an edge if it corresponds to an edge in G. Clearly, dH(a) = 2dG(a) ≤ dH(b)
for all a ∈ A and b ∈ B′. Hence, |NH(S)| ≥ |S| for all S ⊆ B′, so Hall’s condition is satisfied, thus
there is a matching covering B′ in H. This clearly gives the collection of desired cherries in G. �

The following is the classic theorem of Kőnig.

Theorem 3.3 (Kőnig’s theorem). Let G be a bipartite graph with maximum degree ∆. Then, G
decomposes into ∆ matchings.

We now combine the above results to prove the following tool, which will allow us to cover the vertices
of highest degree in an optimal way with linear forests.

Lemma 3.4. Let G be a graph with a partition A,B of its vertices such that all vertices have degree
at most ∆(G)/100 into B and A is an independent set. Then, the edges of G can be decomposed into
⌈∆(G)/2⌉ linear forests.

Proof. Let ∆ := ∆(G). First, split the graphG[B] into matchingsM1, . . . ,Mt with t ≤ 2∆(G[B]) ≤
∆/50; this can be done by greedily properly-colouring the edges of G[B]. Now, let Bhigh ⊆ B denote
the set of vertices in B with degree at least ∆/4 in A. By repeatedly applying Lemma 3.2 on the
bipartite graph G[A,Bhigh], since for every a ∈ A we have d(a) ≤ ∆/100, note that we can find t
edge-disjoint cherry-matchings M ′

1, . . . ,M
′
t such that the centers in each cherry matching cover Bhigh.

Now, for each i ∈ [t], we can take a linear forest Fi such that Mi ⊆ Fi ⊆ Mi ∪M ′
i and every vertex

in Bhigh has degree two in Fi.
Deleting all edges in

⋃

i≤t Fi gives now a bipartite graph G′ with partition A,B whose maximum
degree is max(∆ − 2t,∆/4) = ∆ − 2t > ∆/2. We are only left to decompose the edges of G′ into
⌈∆/2⌉− t linear forests. For this, let k := ⌈∆/2⌉− t > ∆/100 and define an auxiliary bipartite graph
H = (X,Y ) as follows: let X consist of two copies B+, B− of B and Y := A. For each x ∈ B we
have two copies x+ ∈ B+, x− ∈ B− of it in X. For each edge xy in G′ we add either the edge x+y to
H or the edge x−y. Clearly, we can do this in such a way that for all x ∈ B, both x+, x− have degree
at most k in H. Observe then that H has maximum degree at most k since also the vertices of A
have degree at most k in G′. Therefore, Theorem 3.3 implies that its edges can be partitioned into
k matchings. To finish, note that the edges of H are in one-to-one correspondence with the edges of
G′ and that each such matching corresponds to a linear forest in G′. �

We finish this subsection with an approximate version of the linear arboricity conjecture, first shown
by Alon [2].

Theorem 3.5. For every ε > 0 there exists ∆0 such that the following holds for all ∆ ≥ ∆0. Every
graph with maximum degree at most ∆ can be decomposed into (1 + ε)∆/2 linear forests.
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3.3 Properties of high degree vertices in random graphs

In this section we will discuss various properties satisfied by vertices of high degree, that is, close to
the maximum degree, in the random graph G(n, p).

Lemma 3.6 ([4]). Let X ∼ Bin(n, p) with pn ≥ 1 and q := 1− p. Then, if hqn ≥ 3, we have

P (X ≥ pn+ h) <

√

pqn

2h2π
· exp

(

− h2

2pqn
+

h

pqn
+

h3

p2n2

)

.

Lemma 3.7 ([4],[19]). Let n−1/2 ≥ p ≥ 100 log n/n. With high probability, the minimum degree δ
and maximum degree ∆ of the random graph G(n, p) satisfy

(i) pn+ (1− o(1))
√
2pn log n ≤ ∆ ≤ pn+ 2

√
2pn log n;

(ii) pn− 2
√
2pn log n ≤ δ ≤ pn− 1

2

√
2pn log n.

Proof. For the first part, the upper bound follows immediately by a union bound over all vertices,
since by Lemma 3.6 the probability that a vertex has degree at least pn + 2

√
2pn log n is at most

o(1/n) (by letting h = 2
√
2pn log n). The lower bound is a direct consequence of Theorem 3.12 in

[4] with m being a function which tends to infinity arbitrarily slowly and noting that ∆ = d1 ≥ dm.
The second part is proven in ([19], Lemma 2.2). �

Proposition 3.8. Let n−2/3 ≥ p ≥ C log n/n for C > 0 a large enough constant and let 1/100 ≥
α > 0. Define B to be the set of vertices with degree at least pn+(1−α)

√
2pn log n in G(n, p). Then,

with high probability, all of the following hold.

1. |B| ≤ n1/10.

2. Every vertex v has at most 100 ≤
√
2pn log n/1020 neighbours in B ∪N(B − v).

Proof. Note that if h := (1− α)
√
2pn log n− 100, then

− h2

2pqn
+

h

pqn
+

h3

p2n2
<

(

−1 + 2α +
10√
C

)

log n,

and so Lemma 3.6 implies that

P (X ≥ pn+ h) < n
−1+2α+ 10√

C , (3.1)

whenever X is a Bin(n, p) random variable. Since the degree of each vertex in G(n, p) is a Bin(n−1, p)
random variable, it follows that the expected number of vertices with degree at least pn+h is at most

n
2α+ 10√

C . Therefore, by Markov’s inequality, with high probability there are at most n
2α+ 11√

C ≤ n1/10

such vertices, so that |B| ≤ n1/10.
Now we prove that, for any fixed set S of at most 100 vertices, we have P [S ⊆ B] ≤ (n−1+0.03)|S|.

For this, let us condition on the subgraph G[S]. Clearly, this contributes at most 100 to the degree
of each vertex in S. With G[S] fixed, for each vertex in S to also be in B, it must be that each such
vertex has at least pn+h neighbours in V (G)−S. Now, by (3.1), the probability that a given vertex
in S has at least pn + h − 100 neighbours in V (G) − S is at most n−1+0.03. Furthermore, since the
events of the vertices in S having at least pn+ h− 100 neighbours in V (G)− S are independent, it
follows that the probability that S ⊆ B is at most (n−1+0.03)|S|.

Note that in particular, letting A denote the set of vertices in G(n, p) with degree at least pn+h,
this statement implies that E

[

|A|100
]

= O(n100)(n−1+0.03)100 = O(n3). Indeed,
( |A|
100

)

= Θ(|A|100)
counts the number of subsets of size 100 contained in A. By the statement proven in the previous
paragraph, each subset of size 100 is contained in A with probability at most (n−1+0.03)100. Therefore,

E
[

|A|100
]

= O
(

E

[

(

|A|
100

)

])

= O(n100)(n−1+0.03)100 = O(n3). Applying now Markov’s inequality, we
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have that P
[

|A| ≥ n1/10
]

= P
[

|A|100 ≥ n10
]

≤ E[|A|100]
n10 ≤ n−6. We will need this bound in what

follows.
Now, for the second part we prove that for each vertex v ∈ V (G), the probability that it has at

least 100 neighbours in B ∪N(B − v) is at most o(1/n), so that we are then done by a union bound
over all n vertices. Fix then a vertex v, and expose all edges contained in V (G)− v. By the previous
paragraph, there are at most n1/10 vertices in G[V −v] ∼ G(n−1, p) with degree at least pn+h, with
probability at least 1−n−6. Call this set of vertices B′ and note that B ⊂ B′∪{v}. Also note that by
standard concentration bounds and a union bound we have that the degree of every vertex in V−v is at
most 2np with probability at least 1−o(1/n2). This implies that |B′∪N(B′)| ≤ |B′|(1+2np) < n0.55.
Now we expose the edges touching v, and note that the probability that v has at most 100 neighbours
in B ∪ N(B − v) is at most |B′ ∪ N(B′)|100p100 ≤ n55p100 = o(1/n2). Combining all of these
events we have that v will have at most 100 neighbours in B ∪ N(B − v) with probability at least
(1− n−6)(1− o(1/n2))(1 − o(1/n2)) = 1− o(1/n), as desired. �

4 Extending one linear forest

In this section we show how an appropriate linear forest in a random graph can be extended into a
Hamilton cycle. We start with some basic properties typically satisfied by random graphs.

Definition 4.1. We say that a graph G = (V,E) has property Pα(s, d) if for every X ⊆ V of
size |X| ≤ s and every F ⊆ E such that |F ∩ ∂G(x)| ≤ α · dG(x) for every x ∈ X, we have
|NG\F (X)| ≥ 2d|X|.

The following facts are relatively standard, we include the proofs for completeness.

Lemma 4.2. Let G ∼ G(n, p). If p ≥ C log n/n for large enough C > 0, then whp G has the
following properties.

(a) For every two disjoint sets A,B of size at least n log logn
logn we have e(A,B) > 0.

(b) For every two disjoint sets A,B with |A| ≥ n/ log n and |B| ≥ 100n/C we have that e(A,B) ≥
2|B|.

(c) For α = 1− (log n)−1/8 and d = (log log n)10
4
, G has the Pα

(

n
logn log logn , d

)

-property.

(d) For α = 1− (log log log n)−1/8 and d = 50 log logn
log log logn , G has the Pα

(

n
log logn , d

)

-property.

Proof. For the first claim, note that for fixed sets A and B of the given size, the expected number

of edges is E[e(A,B)] = p|A||B| ≥ Cn(log logn)2

logn . Hence, by standard Chernoff bounds we have that

P[e(A,B) = 0] ≤ e−E[e(A,B)]/10 ≤ e
− 3n(log log n)2

log n .

On the other hand, the number of pairs A,B of the specified size s = n log logn
logn is bounded by

(n
s

)2 ≤ (en/s)2s ≤ (log n)2s ≤ e
2n(log log n)2

log n , so by a union bound over all such pairs we complete the
proof of the first part. The proof for the second part is analogous. For each such pair A,B we have
that the expectation E[e(A,B)] is at least 100n. Therefore,

P[e(A,B) < 2|B|] ≤ e−E[e(A,B)]/10 ≤ e−10n.

Combined with a union bound over at most 22n pairs, we complete this part.
For the third part, we first show that every set S ⊆ V (G) of size at most n(2d+1)

logn log logn spans at

most ε|S|np/d edges, where ε := (log n)−1/4. Note that the probability that there is such an S which
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spans at least ε|S|np/d edges is, by a union bound, at most

n(2d+1)
logn log log n
∑

s=1

(

n

s

)(

s2/2

εsnp/d

)

pεsnp/d ≤
∑

s≥1

(en

s

)s
(

esdp

2εnp

)εsnp/d

=
∑

s≥1

(

en

s

(

esd

2εn

)εnp/d
)s

≤
∑

s≥1

(

en

s

(

esd

2εn

)ε logn/d
)s

≤
∑

s≥1

(

(

100s

n

)ε logn/d−1(d

ε

)ε logn/d
)s

≤
∑

s≥1

(

(

log n

d

)−ε logn/d+1(d

ε

)ε logn/d
)s

→ 0,

where we have used that esd < 2εn and that since the last geometric sum tends to 0 because
(

logn
d

)−ε logn/d+1
(

d
ε

)ε logn/d → 0. Hence, with high probability there is no such set S. We can now

use this to show that the third property of the lemma holds with high probability.
Indeed, note first that we have that with high probability, δ(G) ≥ np

2 by Lemma 3.7. Suppose for
sake of contradiction that G does not have property Pα(

n
logn log logn , d). Then, by definition, there

must exist a set X and a set of edges F such that |NG\F (X)| < 2d|X| and |F ∩NG(x)| ≤ α · dG(x)
for every x ∈ X. This implies that the set S := X ∪ NG\F (X) which has size |S| ≤ (2d + 1)|X| ≤

n(2d+1)
logn log logn spans at least (1 − α)δ(G)|X|/2 ≥ (1 − α)|S|np/10d ≥ |S|np

d(log n)1/4
edges. In turn, the

previous paragraph asserts that the probability that such an X exists tends to 0. Hence, the third
part also holds with high probability.

For the last part, we will again prove that a more general statement holds with high probability.
We show that with high probability for every two disjoint sets S and S′ such that |S| ≤ n

log logn and

|S′| ≤ 2d|S|, the number of edges in G[S ∪ S′] with at least one vertex in S is at most ε|S|np for
ε := (log log log n)−1/4. Clearly, we can upper bound by a union bound the probability that this
event does not hold by at most

n
log log n
∑

s=1

(

n

s

)(

n

2ds

)(

2ds2 + s2

εsnp

)

pεsnp ≤
∑

s≥1

(

n

2ds

)2(2ds2 + s2

εsnp

)

pεsnp

≤
∑

s≥1

( en

2ds

)4ds
(

3edps2

εsnp

)εsnp

≤
∑

s≥1

(

( en

2ds

)4d
(

3esd

εn

)εnp)s

≤
∑

(

20d
( n

ds

)4d−εnp
(

3e

ε

)εnp)s

≤
∑

(

(

ε2n

1000ds

)−εnp/2
)s

→ 0

where we used that d ≤ log log n ≤ εnp/10, that 3esd < εn. Further, the last geometric sum
tends to 0 since ε2n > 1000ds. Now, to show the fourth part, suppose for sake of contradiction
that the graph does not satisfy the Pα

(

n
log logn , d

)

-property. Then, there must exist a set X of size
at most n

log logn and a set of edges F such that |NG\F (X)| < 2d|X| and |F ∩ NG(x)| ≤ α · dG(x)
for every x ∈ X. Denoting now X by S and NG\F (X) by S′ we have that there are at least
(1−α)δ(G)|S|/2 ≥ (1−α)np|S|/4 > εnp|S| edges in G[S∪S′] which touch S. But since |S| ≤ n

log logn ,
by the previous analysis this can only occur with probability tending to 0, which completes the proof.

�

The following result comes from the Friedman–Pippenger tree embedding technique, and is proven
in ([7], Theorem 3.5). It states that given a collection of pairs of vertices in a graph with good
expansion properties, if the pairs are nicely distributed in the graph, one can connect each pair with
mutually vertex disjoint paths.

Theorem 4.3. Let G be a graph with the Pα(m,d) property for some 3 ≤ d < m, such that for every
two disjoint U, V ⊆ V (G) of sizes |U |, |V | ≥ m(d− 1)/16 there exists an edge between U and V . Let
S be any set of vertices such that |NG(x) ∩ S| ≤ βdG(x) for every x ∈ V (G), where β < 2α − 1,
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and let P = {{ai, bi}} be a collection of at most dm log d
15 logm disjoint pairs from S. Then there exist

vertex-disjoint paths in G between every pair of vertices {ai, bi}, such that the length of each path is

2
⌈

log(m/16)
log(d−1)

⌉

+ 3.

A graph is Hamilton-connected if for every two vertices in the graph, there is a Hamilton path between
them. We also use the following result of Hefetz, Krivelevich and Szabó ([15], Theorem 1.2), which
states that sufficiently good expander graphs that have an edge between every two large enough sets
are Hamilton-connected.

Theorem 4.4. Let G be a graph on n vertices for sufficiently large n. Suppose that for some d = d(n)
the following hold:

• For every S ⊆ V (G), if |S| ≤ n log logn log d
d logn log log logn then |N(S)| ≥ d|S|.

• There is an edge in G between any two disjoint subsets A,B ⊆ V (G) such that |A|, |B| ≥
n log logn log d

4130 logn log log logn .

Then, G is Hamilton-connected.

The following result is the key tool which allows us to extend a given linear forest F into a Hamilton
cycle in a random graph, under the condition that every vertex in the random graph has many
neighbours outside of V (F ).

Lemma 4.5. Let G ∼ G(n, p) for p ≥ C log n/n for a large enough C. With high probability the
following holds. Suppose that F is a linear forest with V (F ) ⊆ V (G) such that |NG(v) \ V (F )| ≥
np/109 for all v ∈ V (G), and |V (G) \ V (F )| ≥ n/105. Then there exists a Hamilton cycle in G ∪ F
which covers F .

Proof. We assume that G has the properties from Lemma 4.2. Let ε = 1/1010. Let U =
V (G) \V (F ). Split U uniformly at random into three parts U1, U2, U3, where each vertex is assigned
a set independently and uniformly at random, and note that whp each set is of size at least n/106

and for all vertices v ∈ V (G) and i ∈ {1, 2, 3} we have that |NG(v) ∩ Ui| ≥ np/1010. This follows by
a standard application of Chernoff bounds. We first do the following process: if F has more than
εn components, consider a set S ⊆ V (F ) of endpoints which contains exactly one endpoint of each
path in F ; since |S| > εn and by Lemma 4.2 (a), there is an edge in S which then can be used to
update F and reduce its number of components by one; then, repeat the process until F has at most
εn components.

Now, we will use U1 and perform another process. At each step, we update our current linear
forest F to one which has one less component and one more vertex. We do this until F has at most
n/ log n components. Indeed, at each step consider a set S ⊆ V (F ) of endpoints which contains
exactly one endpoint of each path in F , and the set U1 \ V (F ); since at each previous step at most
one vertex is added to the linear forest, we have that U1 \ V (F ) has size at least |U1| − εn ≥ εn
(indeed, recall that we started the process with F having at most εn components). Therefore, by
Lemma 4.2 (b), we have e(S,U1 \ V (F )) > |U1 \ V (F )| and so, there is a vertex in U1 \V (F ) with at
least two neighbours in S; observe that we can then add this vertex to the linear forest F while also
reducing its number of components by one, as desired.

At the end of both of these processes, we have a linear forest F ′ which covers the original linear
forest F , such that V (F ′) ⊆ V (F ) ∪ U1 and it has at most n/ log n components. We now apply
Theorem 4.3 in order to transform the linear forest F ′ into a path. For this, define the graph G′

to be the induced subgraph of G on the vertex set I ∪ U2 where I is the set of all endpoints of the
paths in F ′. Order the paths of F ′ as P1, . . . , Pl and for each Pi let ai, bi denote its endpoints. We
want to connect each bi to ai+1 with vertex disjoint paths in G′. For this we want to use Theorem
4.3. Indeed, we can use the fact that U2 ensures that every vertex has at least np/1010 neighbours
in U2 ⊆ V (G′) and Lemma 4.2 (a) and (d) to see that G′ satisfies the conditions of this theorem
with m = n

log logn , d = 50 log logn
log log logn , α = 1 − 1011(log log log n)−1/8 and β = 1 − 1/1011. By part

(a), we have that every two disjoint sets in G′ of size at least m(d− 1)/16 ≥ n log logn
logn have an edge
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between them. By part (d) and the fact that G′ has minimum degree at least np/1010 ≥ δ(G)/1011 ,

one can easily check that since G satisfies property Pα′

(

n
log logn , d

)

with α′ as in (d), then G′ must

satisfy property Pα

(

n
log logn , d

)

with 1 − α = 1 − 1011α′. Finally, the number of paths in F ′ is at

most n/ log n ≤ dm log d
15 logm and every vertex x in I has |NG′(x) ∩ I| ≤ βdG′(x) since all vertices have at

least δ(G)/1011 neighbours in U2. Concluding, there exists a collection of biai+1-paths in G′ which
are vertex-disjoint. Note that adding these to F ′ produces a path P ⊆ V (G) \ U3 which covers F ′.

To finish, we can apply Theorem 4.4 implying that the path P can be extended into a Hamilton
cycle. Indeed, let x, y denote the endpoints of the path P . Now, note that G′ = G− (V (P ) \ {x, y})
satisfies the conditions of Theorem 4.4. Indeed, using that every vertex has np/1010 ≥ δ(G)/1011

neighbours in U3 ⊆ V (G′) and Lemma 4.2 (c), it must be that for d = (log log n)10
4
every set

S ⊂ V (G′) of size at most
n

log n log log n
≥ n log log n log d

d log n log log log n

expands by a factor of d. Also, by Lemma 4.2 (a) we have an edge between every two disjoint sets of
size at least n log logn

logn < n log logn log d
4130 logn log log logn , so the conditions of Theorem 4.4 are satisfied. To complete

the proof, we connect x, y by a Hamilton path in G′. �

Remark 4.6. Note that, as mentioned in Section 2, Lemma 4.5 can be used easily to turn an almost-
optimal Hamilton packing into an almost-optimal Hamilton cover. Indeed, one can just partition the
leftover graph (after packing) into few matchings. Splitting the matchings randomly into two parts,
and applying Lemma 4.5 to extend each of the obtained matchings into a Hamilton cycle, would
complete the proof.

5 Proof of Theorem 1.2

In this section we prove the main theorem. Let G ∼ G(n, p). We will from now on assume that G is
fixed and satisfies all the properties appearing in Theorem 1.1, Lemma 3.7 and Proposition 3.8 (with
α := 1/100) and Lemma 4.5. As mentioned in the proof outline, we first apply the packing result
(Theorem 1.1) to obtain ⌊δ(G)/2⌋ edge-disjoint Hamilton cycles. Let L denote the graph consisting
of the remaining edges. We will use the following parameters in the rest of the section: t = 104,
α = 1/450 and k = ⌈∆(L)/2⌉. Our goal is to find k Hamilton cycles in G which cover the edges of L.
Let B denote the set of vertices v such that dL(v) ≥ (1− α)∆(L). We note the following properties
of L,B.

Lemma 5.1. The following hold.

(i)
√
2pn log n ≤ ∆(L) ≤ 4

√
2pn log n,

(ii) |B| ≤ n1/10,

(iii) eG(v,B ∪NL(B − v)) ≤ ∆(L)/1020 for all v ∈ V (G).

Proof. These follow directly from Lemma 3.7 and Proposition 3.8, noting that dL(v) ≥ (1−α)∆(L)
implies dG(v) ≥ ∆(G)− α∆(L) ≥ np+ (1− 1

100 )
√
2pn log n. �

5.1 Initial covering of L by linear forests

Covering the edges of L−B by (1− α/2)k linear forests

The following is a simple lemma which enables us to split the edges of L−B into a constant number
of graphs Li, such that each of them has roughly the same maximum degree, and such that each
v ∈ V (Li) has many neighbours in V (G) \ V (Li).
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Lemma 5.2. There exists a partition of the edges of L−B into subgraphs L1, . . . , Lt with

∆(Li) ≤ (1− 3α/4)
∆(L)

t − 2
(5.1)

for each i ∈ [t]; further, denoting Ri = V (G) \ (B ∪ V (Li)), we have for every vertex v ∈ V (G) that
eG(v,Ri \NL(B − v)) ≥ np/200t and |Ri| ≥ n/2t.

Proof. Partition V (L) randomly into sets R′
1, . . . , R

′
t, where each vertex is assigned a part inde-

pendently and uniformly at random. Define Ri to be the set R′
i \B. Label each edge in each L[Ri]

uniformly at random with one of the colors in [t]\{i}. For each pair 1 ≤ i < j ≤ t, label each edge in
L[Ri, Rj ] uniformly at random with an element in [t] \ {i, j}. Let Li be the graph on V (L) \ (B ∪Ri)
which contains all the edges labeled by i.

Now, the required bounds simply follow from standard concentration inequalities. Indeed, note
first that for each i and vertex v ∈ V (L), we have that the edges in L incident to v are independently
colored with color i, each with probability at most 1

t−2 , hence by using Chernoff bounds we have

that dLi(v) ≤ (1− 3α/4)∆(L)/(t− 2) with probability at least 1− exp(−∆(L)/109t). Since ∆(L) ≥√
2pn log n ≥

√
C log n and since t = 104 <

√
C/1010, this probability is at least 1 − o(1/tn) and

thus, a union bound over all i and v implies that with high probability, ∆(Li) ≤ (1− 3α/4)∆(L)
t−2 for

each i.
Since R′

i is a random subset of V (L) where each vertex is included with probability 1/t, the
expected size of |R′

i| is n/t. Hence, by a standard Chernoff bound we have that |R′
i| ≥ 2n/3t whp.

Hence, since |B| ≤ n1/10, we have |Ri| = |R′
i \B| ≥ n/2t whp.

Finally, we want to show that whp eG(v,Ri \ NL(B − v)) ≥ np/200t for all i ∈ [t]. First recall
that δ(G) ≥ np/2 by Lemma 3.7. We then have that E[eG(v,R

′
i)] ≥ np/2t ≥ 10 log n, hence whp

eG(v,R
′
i) ≥ np/4t for all vertices v and i, again using a Chernoff bound, and a union bound over at

most n vertices, and over all i ∈ [t]. Now, by Lemma 5.1 (iii) we have that eG(v,B ∪ NL(B − v))
is at most ∆(L)/1020 < np/10t. Since Ri = R′

i \ B, we have that with high probability, eG(v,Ri \
NL(B − v)) ≥ np/200t for all v and i, as desired. �

Now, for each i ∈ [t], Theorem 3.5 applied to Li gives us a collection of at most (1 + ε)∆(Li)
2 linear

forests which cover Li, for any choice of a constant ε > 0.

Definition 5.3. For each i ∈ [t] (recall t = 104), define a collection Fi of (1 − 2α/3) ∆(L)
2(t−2) linear

forests, as given by Theorem 3.5, which cover Li. We denote by F0 the union of these collections.
Note that |F0| = t · (1−2α/3) ∆(L)

2(t−2) ≤ (1−α/2)k, so we can assume that F0 has precisely (1−α/2)k

linear forests by possibly adding forests to F0 which consist of any single vertex v /∈ B.

Covering the rest of L by k linear forests

We will now cover the rest of the edges in L, that is, those edges incident with B.

Lemma 5.4. There exists a collection F1 of k linear forests which decompose the edges of the subgraph
of L consisting of the edges touching B.

Proof. Given the properties in Lemma 5.1, we need only to apply Lemma 3.4 to this subgraph of
L, which we denote as LB . Indeed, take A := V (L) \B and B := B and note that A is independent
in LB , while the degree into B is at most ∆(L)/1000 by Lemma 5.1 (iii). This gives a collection F1

of k linear forests which decompose the edges of LB as desired. �

5.2 Joining F0 to F1

We will now merge F0 with F1 in order to create one collection F of k linear forests covering the
edges of L, such that each vertex in each forest has a large neighbourhood outside of that forest in G.
In the end, we will transform each of these linear forests into a Hamilton cycle using Lemma 4.5,
thus finishing the proof. The construction of F proceeds as follows.
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First, recall that by Definition 5.3, we have |F0| = (1 − α/2)k. Take a subcollection F ′
1 ⊆ F1 of

size |F0| and take an arbitrary pairing (F0, F1) between F0 and F ′
1. For each pair (F0, F1), we can

define the linear forest F2 := (F0 ∪ F1) \ E, where E is the set of edges in F0 which are incident to
vertices also incident to some edge of F1. We now add all these new linear forests F2 to F , so that
currently, |F| = |F0| = (1 − α/2)k. Let L′ ⊆ L denote the subgraph of L formed by the edges in
L− B which do not belong to any linear forest F2 ∈ F , that is, those which were in some set E as
defined before. Then, the following holds.

Claim 1. ∆(L′) ≤ ∆(L)/1019.

Proof of claim: Let us fix a vertex x /∈ B. Suppose an edge xy belongs to L′, that is, there is
a pair (F0, F1) such that xy ∈ E. Then, it must be that one of x, y belongs to V (F1) \ B, and
thus, to NL(B). The number of such vertices y with y ∈ V (F1) \ B is at most eL(x,NL(B)). If
x ∈ V (F1) \ B, then there are at most 2eL(x,B) possible options for y - this is because choosing a
neighbour of x in B will fix the linear forest F ′

1 which then gives two options for y with xy ∈ F0.
Hence ∆(L′) ≤ maxx 3eL(x,B ∪NL(B)) ≤ ∆(L)/1019, using property (iii) of Lemma 5.1.

Let L′
i := L′ ∩ Li for each 1 ≤ i ≤ t. We will now add linear forests to F which cover the edges

in L′ as well as the edges used in F ′′
1 := F1 \ F ′

1. We do this so that at the end we have |F| ≤ k
as desired. Let us partition F ′′

1 arbitrarily into t collections F ′′
1 (1), . . . ,F ′′

1 (t) each of size at least
αk/2t > ∆(L)/108 ≥ 100∆(L′). For each 1 ≤ i ≤ t, we can then apply Lemma 3.1 with H := L′

i,
G :=

⋃

F∈F ′′
1 (i)

F . Indeed, note that a vertex v ∈ V (H) does not belong to B; therefore, its degree in

H is at most ∆(L′) ≤ |F ′′
1 (i)|/100 and its degree in G is at most eL(v,B) ≤ ∆(L)/1020 < |F ′′

1 (i)|/1012
using property (iii) of Lemma 5.1. So, Lemma 3.1 finds us a collection F(i) of |F ′′

1 (i)| linear forests
covering the edges of L′

i and those used in F ′′
1 (i). To conclude, we add all the collections F(i) to the

collection F , so that |F| ≤ k and the linear forests in it cover all edges of L.

Claim 2. Every F ∈ F satisfies the conditions of Lemma 4.5, i.e., |V (G) \ V (F )| ≥ n/105 and
|NG(v) \ V (F )| ≥ np/109 for all v ∈ V (G).

Proof of claim: First, recall that each F ∈ F is such that F [V (G) \ B] ⊆ Li for some i, so that
Ri \NL(B− v) ⊆ V (G) \V (F ). Further, by Lemma 5.2 we have that |Ri| ≥ n/2t, by Proposition 3.8
we know that |B| ≤ n1/10, and by Lemma 3.7 we have ∆(G) ≤ 2np. Combining these three, and
recalling that p ≤ n−2/3, we get that

|V (G) \ V (F )| ≥ |Ri \NL(B − v)| ≥ n/2t− 2np|B| ≥ n/2t− o(n) ≥ n/105.

For the second part, we can similarly apply Lemma 5.2 since it tells us that for all vertices v we have
|NG(v) \ V (F )| ≥ eG(v,Ri \NL(B − v)) ≥ np/200t ≥ np/107, as desired.

5.3 Extending F into a Hamilton cycle cover

To finish the proof, we can take the collection F of at most k linear forests covering the edges of L.
Claim 2 shows that each linear forest F ∈ F satisfies the conditions of Lemma 4.5. So we can apply
this lemma in order to extend each of these linear forests to a Hamilton cycle in G. This together
with the covering of G − L as discussed in the beginning of the proof gives a covering of G with
⌈∆(G)/2⌉ Hamilton cycles as desired.

6 Concluding remarks

In this paper we showed that a random graph G ∼ G(n, p) can, with high probability, be covered by
⌈∆(G)/2⌉ Hamilton cycles for all p ≥ C log n/n for some large constant C, thus proving a conjecture
of Glebov, Krivelevich and Szabó [12] in a strong form and improving upon the previous results of
Hefetz, Kühn, Lapinskas and Osthus [16] and of Ferber, Kronenberg and Long [9]. An interesting
direction of research would then be to consider different spanning structures, such as spanning trees
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or H-factors for a fixed graph H. Some work on this topic has already been done by Bal, Frieze,
Krivelevich and Loh [3].

Another interesting direction concerns the directed versions of the packing and covering problems.
For example, does our result extend to random digraphs? It was shown by Ferber, Kronenberg and
Long [9] that an asymptotically optimal covering of a random digraphD(n, p) with directed Hamilton

cycles exists whenever p ≫ log2 n
n . It would be interesting to see if the range of p can be improved,

as well as if an optimal covering can be found. Many of the ideas discussed here are also applicable
to the directed context, and it would be worthwhile to explore the adaptation of our methods in this
case.

Finally, it is well-known that G(n, p) is already Hamiltonian when p ≥ (1+ ε) log n/n, hence it is
natural to ask whether the covering result also holds for this range of p. It would also be interesting
to consider a hitting time version, since we know that in the random graph process, the graph is
Hamiltonian as soon as it has minimum degree 2. This problem was first formulated in [16].
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[16] Dan Hefetz, Daniela Kühn, John Lapinskas, and Deryk Osthus. Optimal covers with Hamilton
cycles in random graphs. Combinatorica, 34(5):573–596, 2014.

[17] Peter Keevash. The existence of designs. arXiv preprint arXiv:1401.3665, 2014.
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